STABILITY OF BOUNDARY MOTION FOR AN EXPLOSION-PRODUCED
CAVITY IN SOFT GROUND
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One of the first models of an explosion in the ground was a hydrodynamic scheme [1]. De~
spite the deficiencies and definite thermodynamic contradictions [2] of the scheme, the qual-
itative picture of an explosion in the ground [1] is described rather clearly. Subsequently,
many papers appeared which were concerned with this problem and which used more complex
plastic and elastoplastic models as simulated media, but the model [1] of an explosion in the
ground, as before, impresses one with its simplicity, Using the formulation of [1], the present
paper investigates the stability of the boundary of an explosion-produced cavity and of the

shock wave, Consideration is limited to the simplest case where the main motion is one-
dimensional,

In the present case, the scheme of [1] takes the following form. A shock wave starts propagating at
the time t = 0 in a medium with a constant density p;. Behind the shock front there is an incompressible
ideal fluid with a density p,. The solutions characterizing the motion of the medium are of the form

where u, is the projection of the velocity vector on the x axis and p; is the pressure, At the boundary x =aq

of the explosion-produced cavity, the pressure in the fluid is equal to the pressure in the cavity, At the
shock front x = R, the conditions

g (R)=ER;
Pol By=0,1ER*+ps,

are satisfied, where ¢ =1— p/p,, the dot denotes differentiation with respect to time, and pg is the pres-

sure from which shock compression is initiated. Unperturbed flow will be characterized by the following
relations:

a=EtR— (1 _ E)am aO:HO — is the initial state ;
- g y
Po = — Dol — —g“ - pZuDR'

We assume that the main flow is subjected to a small perturbation
Uz=uy-+u; Uy=v; p=py+p; *
Xp=H"¢; X)L:a"?"ﬁs

where Uy and Uy are the components of the velocity vector of the perturbed flow; X,(y, t) and Xy, ) are,
respectively, the equations for the boundaries of the explosion-produced cavity and the shock wave,
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The equations of motion and the equation of continuity, linearized with

/R respect to the perturbation, are written in the form
(g?_u_;uau_— 1 dp
dt 09 T 0s dzr ;
o ar 1 ép
: G g = T ey @
R(x) @ x du de
i o - 0
dz ' dy

Fig. 1

Linearization of the conditions in powerful explosions was performed in {3] for solution of the problem of
shock-wave stability. In the present case, the medium behind the shock front is incompressible and there
are no density perturbations, In analogy with {3], one can obtain the relations

apy
= 2p1uos - =&

U=

(s
!u-m
o=

Qw
':co

when x = R, the term(dp, /6x)& appears because of the drift of the boundary condition from the perturbed
boundary at x = Xp, toward the old boundary at x = R.

On the free surface, we have two relations: from the condition for continuity of pressure

9pa
p——s

and from kinematical conditions

u=906 when £=4a.

We assume that the perturbations of the free boundary and of the surface of the shock wave are har-
monic

e=e(t)cos ky; 6=0(t)cos ky.

Then the boundary conditions are written in the form

at z=a
| p=paitgB cos ky, @)
[u:& cos ky,
atz=R
p=(pettoe+201158)c08 Ky,
={ & cos ky, @)
duldxr= — uyk’e cos ky.

The last of the relations in (3) was obtained through the continuity equation.

Differentiating the first equation in (1) with respect to x and the second with respect to y, and adding
them, we obtain a Laplace equation for p. Subsequently, the scheme for construction of a solution is the
following: first, we seek a solution of the equation Ap =0 satisfying the first conditions in (2) and (3); then,
using this solution, we find the function u(x, y, t) from the equation of motion and having substituted it in
the remaining boundary conditions, we obtain the desired relations for determination of the perturbation
amplitudes g(t) and 4(t).

One can verify that the function

(poitoe - 2011e8) sh k (& — @) + pgugd sh k (R — 2)

p= Shk(RE—a) cos ky

satisfies the necessary requirements for p.

The family of curves for the first equatmn of the sytstem (1) have the form 8x/8t = uy(t). Along the

curves, (du /8t) =—(1/p,)(9p +/8X) and u(x, t) = u(R, 7) 5 6:1: [2(z) + = — a(?), z] dzywhere T is the time

of shock-wave arrival at the point with the coordinate R(T) (Fig. 1).
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R(t) — afr) = z— a{t)

k3

When x = a, -
ula. 1) =u(R(©0),0— \ o %(a(z), z)dz.
D

Differentiating this expression with réspect to time and substituting it in the second relation in (2), we ob~
tain

dcosky = — L {a,t). 4)

We determine du/0x when x = R,

t
du  du (R 'z) 617 t & p 1 dp(R(z), 1) ot
= Yg-g—g— fa(z) +2 —al(t), zldz + 2—'T v

bz

whenx =R, t=T,

gu _Tou(Rt) , 1 3p(R. )] v
dz g | ps 0z 0x ’
g vk

Jz R—a (1—8) ug

‘Usingthe second and third conditions in (3), we obtain

1 8p{R, z)]A (5)

Py oz

ugkfecos by = — (—1??)-— {bs cos ky + —

Substituting the expression for p(x, t) in Egs, (4) and (5), we obtain a system of ordinary differential
equations for the determination of 6 and &,

d* L2kl —Buy de kug —Fu cth iR — —_0-
PRy TR & T hi(R—a)d =0 ”

d? s AR (4 2
=+ 2k (1~ B uyeth k(R —a) = —}-{_I—G——(g——)—;-kuocthk']%—a)is e 8 =0,

{0y =§(0).

This system was solved numerically for three different types of motion:

un

uniform - v, = const, a = ut;

uniformly accelerated — u, = at, a = ot?/2;

decelerated — uy =g/ 2t + 1, a = V3GL + 1.
The last solution for u, was obtained in the model of [1] for Pg = 0 and an adiabatically varying pressure
at the free boundary:
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L P =P ({l)y for p=3.
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We investigate the behavior of the solutions of the system (6) for
t— e, One can then neglect in the equations terms containing the coeffi-

<]
- r—«"‘

\\ é 7\5 '\ 7 j/b cient 1/sh k(R— a), The system of equations (6) takes the form
—4 A i .
\\_,” \j\\“/ a4
“s 3. 2 ku0§ == 0;
e N I LY . 0
Fig. 4 4 Eg—‘l‘Zk(i—G)uoW‘f'ng_—‘l'kquS:O'

In the case of uniform motion, Eqs. (7) have the simple solutions

8= Ayt + Ay

¢'= Be" - Be™;

nys = L(i:—gg}ﬁ’-(~ 14+ V1——EE ); A;, B; — const,

i.e., theperturbations of the free boundary increase linearly for large t and those in the shock wave are
damped (damped oscillations). The results of a numerical calculation exemplifying this case are shown in
Fig. 2, where the solid line corresponds to the value k = 2 and the dashed line, to k = 10.

For uniformly accelerated motion, the system (7) takes the form

§ —kad=0;

E(l—Yoaie 1

g+ HL=Dote 4 gamp

—
£ 2e =0,

Then 6 = Cje’ kot , Cye” @, In the second equation we make the substitution

— - Al—Fa
s—w(t)e‘\.p[-——*—ﬁ———t ]

We then obtain the equation

| [ K2 (1—F) R1—8 _
w—l—[ 3 12— 5 a}w—O

for w(t). Neglecting the second term in the coefficient of w, we obtain

w—]/TIi_Z_(kcx ‘/——g 2).

On the basis of the material presented above, one can arrive at the following coriclusion: for uniformly
accelerated motion the perturbations at the shock front decrease exponentially and those at the free sur-

face increase exponentially, Results of numerical calculations for k = 2 and k = 10 in this case are shown
in Fig. 3.

For decelerated motion

a=V2pt+ 1 uoz_]?_z_ﬁft_l—,

and the system (7) is written in the form
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(54 B 50
' (2Bt + 1) 32 =0
% 2k(1—8 B é_,_[iﬁﬁm-ﬁ)
l E VT @pr+1E

K l._q.
& (2Bt + 1)“]

Neglecting the comparison with 23t and neglecting the second term in the coefficient of &, we obtain
after the substitution r = vT

rdr d‘s B RV =0;
2V r(U—1) ds

N ey
(

dr

Here also one can neglect the—1 term in the second part of the equation for €. The system then has the
following solution:

£ = Dlev,lft—_i_ Dzevzﬁ';
- k(l—?m (_1 ii‘/___g )
6=V T 1, 2V TV 2R )

The solution for ¢ represents damped harmonic oscillations and that for 6 represents harmonic oscillations
whose amplitude increases as & ~ $/8 for large t. Curves for € and 5 are shown in Fig,. 4 for k=2 and
k =10 which illustrate this type of motion for short times.

In all the types of motion discussed, the shock wave is stable with respect to small perturbations
and the free boundary is unstable with the growth rate of the instability depending on the form of the un-
perturbed motion. The instability grows most rapidly for accelerated motion and slowest of all for de-
celerated motion of the boundary of the explosion-produced cavity,

When producing explosions in the ground, it was long ago noted that a considerable volume of the
ground around an explosion-produced cavity was penetrated by numerous radial cracks which emerged at
the surface of the cavity, The observed instability is a possible "trigger mechanism" for crack formation
during an explosion in the ground.
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